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SUMMARY

Orthogonal Latin hypercubes provide a class of useful designs for computer experiments. Among the
available methods for constructing such designs, the method of rotation is particularly prominent due to its
theoretical appeal as well as its space-filling properties. This paper presents a general method of rotation
for constructing orthogonal Latin hypercubes, making the rotation idea applicable to many more situations
than the original method allows. In addition to general theoretical results, many new orthogonal Latin
hypercubes are obtained and tabulated.

Some key words: Computer experiment; Orthogonal array; Space-filling design.

1. INTRODUCTION

Orthogonal Latin hypercubes have long been recognized as a class of useful designs for computer
experiments and numerical integration. This goes back to Iman & Conover (1982), and subsequently
Owen (1994) and Tang (1998), who considered nearly-orthogonal Latin hypercubes. Ye (1998) was the
first to study exactly orthogonal Latin hypercubes. Since then, many authors have contributed to this
research field. Some significant developments include Steinberg & Lin (2006), Lin et al. (2009), Pang et al.
(2009), Sun et al. (2009), Lin et al. (2010), Georgiou & Efthimiou (2014), and Sun & Tang (2017).

Among the many methods of constructing orthogonal Latin hypercubes, the method of rotation stands
out because of its theoretical elegance. It was introduced in Steinberg & Lin (2006) and further studied by
Lin et al. (2009) and Pang et al. (2009). It enjoys some very attractive space-filling properties (Sun & Tang,
2017), but can be criticized for its severe run-size restriction. For example, when two-level orthogonal
arrays are to be rotated into orthogonal Latin hypercubes, their run sizes must be of the form 22u

, which
equals 4, 16, 256, 65 536 for u = 1, 2, 3, 4.

In this paper we propose and study a general method of rotation, thus rendering the rotation idea
applicable to many more scenarios than the original method allows. In fact our general method fills all the
run-size gaps left by the original rotation method. In particular, it can be used to rotate two-level orthogonal
arrays of 32, 64 and 128 runs into orthogonal Latin hypercubes. We present some general theoretical results
as well as some new orthogonal Latin hypercubes that can be constructed by the general method.

A Latin hypercube is an n × m matrix where each column is a permutation of the levels taken from
�(n) = { j − (n − 1)/2 : j = 0, 1, . . . , n − 1}, and it becomes an orthogonal Latin hypercube if any two
columns are orthogonal. We use OLH(n, m) to denote such an orthogonal Latin hypercube of n runs for m
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466 F. SUN AND B. TANG

factors. Our use of centred levels in �(n) is to facilitate the study of orthogonality. An orthogonal array
of strength t with n runs for m factors is an n × m matrix with entries from a set of s levels such that in
each subarray of t columns, all the t-tuples of levels occur with the same frequency. We use OA(n, m, s, t)
to denote such an array. In this paper, the s levels where s is a prime power are taken from a Galois field
GF(s) = {α0 = 0, α1, . . . , αs−1}, which simplifies to GF(s) = {0, 1, . . . , s − 1} if s is a prime. When an
orthogonal array is to be rotated into an orthogonal Latin hypercube, before the rotation takes place, we
should convert its levels into equally spaced and centred levels in �(s) = { j−(s−1)/2 : j = 0, 1, . . . , s−1},
which can be done by simply replacing αj by j − (s − 1)/2 for j = 0, 1, . . . , s − 1. When an orthogonal
array A that has levels from GF(s) is made to have levels from �(s), we write the resulting array as A∗.

2. TWO EXAMPLES

As the general method is a bit technical, we present two examples in this section to illustrate the main
idea.

Example 1. We give a construction of an OLH(32, 24). From Steinberg & Lin (2006), an
OA(16, 12, 2, 2), say A, can be obtained that has the form A = (A1, A2, A3) where each Aj is a full 24

factorial. Now define

Bj =
(

Aj Aj

Aj 1 + Aj

)

where 1 + Aj is the matrix obtained by adding 1, mod 2, to all the entries of Aj. In fact, Bj is simply the
double of Aj (Chen & Cheng, 2006), and it takes a slightly different form here because we are using 0 and
1 instead of ±1 to denote the two levels. Now let

Bj = (Bj1, Bj2), Bj1 =
(

Aj

Aj

)
, Bj2 =

(
Aj

1 + Aj

)
.

A moment of thought reveals that a subarray of five columns, given by (Bj1, b) for any column b of Bj2 or
by (b, Bj2) for any column b of Bj1, gives a complete 25 factorial design. Let s = 2 and consider

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s4 −s3 −s2 s −1 0 0 0
s3 s4 −s −s2 0 1 0 0
s2 −s s4 −s3 0 0 1 0
s s2 s3 s4 0 0 0 −1
1 0 0 0 s4 −s3 −s2 s
0 −1 0 0 s3 s4 −s −s2

0 0 −1 0 s2 −s s4 −s3

0 0 0 1 s s2 s3 s4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly, the columns of matrix R are mutually orthogonal and the nonzero entries in each column are a
signed permutation of 1, 2, 4, 8, 16. This, in conjunction with the aforementioned property of Bj, implies
that Cj = B∗

j R is an OLH(32, 8), where B∗
j = Bj − 0·5 simply converts two levels 0 and 1 into two centred

levels ±0·5. Finally, we obtain an OLH(32, 24) by taking C = (C1, C2, C3).

Example 2. We construct an OLH(27, 8). Let A be an OA(9, 4, 3, 2) and write A = (A1, A2) where A1

and A2 each have two columns. Let

Bj = (Bj1, Bj2), Bj1 =
⎛
⎝ Aj

Aj

Aj

⎞
⎠, Bj2 =

⎛
⎝ Aj

1 + Aj

2 + Aj

⎞
⎠
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Miscellanea 467

where the calculations for 1 + Aj and 2 + Aj are both modulo 3. It can be easily checked that a subarray
of three columns, given by (Bj1, b) for any column b of Bj2 or by (b, Bj2) for any column b of Bj1, is a
complete 33 factorial. This shows that Cj = B∗

j R where B∗
j = Bj − 1 is an OLH(27, 4) and hence (C1, C2)

is an OLH(27, 8), and where

R =

⎛
⎜⎜⎝

9 −3 −1 0
3 9 0 1
1 0 9 −3
0 −1 3 9

⎞
⎟⎟⎠

has mutually orthogonal columns and the nonzero entries in each column are a signed permutation of
1, 3, 9.

3. GENERAL RESULTS

3·1. A general class of rotation matrices

Let

R10 =
(

s −1
1 s

)
, Ru0 =

(
s2(u−1)

R(u−1)0 −R(u−1)0

R(u−1)0 s2(u−1)
R(u−1)0

)
(u = 2, 3, . . .).

These are the rotation matrices used in Steinberg & Lin (2006) and Pang et al. (2009) for constructing
orthogonal Latin hypercubes. More specifically, Ru0 is a matrix of order 2u, where the columns are mutually
orthogonal and the entries in each column are a signed permutation of 1, s, . . . , s2u−1. We will build a
sequence of rotation matrices based on each Ru0. First let

Q1 =
(

1 0
0 −1

)
, Qu =

(
Qu−1 0

0 −Qu−1

)
(u � 2).

Then define

Ru1 =
(

sRu0 −Qu

Qu sRu0

)
, Ruv =

(
sRu(v−1) −Qu+v−1

Qu+v−1 sRu(v−1)

)
(v � 2). (1)

Clearly, Ruv in (1) is of order 2u+v. We have obtained a sequence of rotation matrices Ru0, Ru1, Ru2, . . . based
on each Ru0. This is supported by Lemma 1.

LEMMA 1. (i) The columns of Ruv are mutually orthogonal.
(ii) The nonzero entries in each of its columns are a signed permutation of 1, s, s2, . . . , s2u+v−1.

The proofs of Lemma 1 and all later results are deferred to the Appendix.

3·2. Main results

To construct orthogonal Latin hypercubes using the rotation matrices Ruv in (1), we first construct
an orthogonal array whose columns are grouped into subarrays of 2u+v columns, each of which has the
property that the subset of columns corresponding to the 2u + v nonzero entries in each column of Ruv is a
full factorial. Lemmas 2 and 3 are the foundation of our construction method. We recall that the levels of
orthogonal arrays are from GF(s) = {α0 = 0, α1, α2, . . . , αs−1}.

LEMMA 2. If
(
e1, . . . , eg , f

)
is an s-level full factorial, so is

(
e1, . . . , eg , f +ej

)
for any ej.
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468 F. SUN AND B. TANG

Let w = (α0, α1, . . . , αs−1)
T, and define dj = αjw for j = 0, 1, . . . , s − 1. Matrix (d0, d1, . . . , ds−1) is in

fact a difference scheme. One can regard Lemma 3 below as a high-dimensional variant of Lemma 6·27
of Hedayat et al. (1999).

LEMMA 3. Let A be an s-level full factorial for g factors and let Bj = dj ⊕ A, the Kronecker sum of dj

and A. Then (Bi, b) for any b in Bj must be an s-level full factorial in g + 1 factors for any i |= j.

We are now ready to present a construction of orthogonal Latin hypercubes motivated by the general
rotation matrices Ruv in (1). Let B(0) be a full factorial of 2u factors of s levels. Create

Bj1 = (
d2j1 ⊕ B(0), d2j1+1 ⊕ B(0)

)
, j1 = 0, 1, . . . , [s/2] − 1,

where [x] denotes the greatest integer not exceeding x. In total, [s/2] such Bj1 can be created, each of
which, according to Lemma 3, has the property that certain subarrays of 2u + 1 factors are full factorials,
which allows an orthogonal Latin hypercube to be generated via B∗

j1
Ru1 where B∗

j1
is obtained from Bj1 by

replacing level αj by level j − (s − 1)/2. Now, for each Bj1 , create

Bj1j2 = (
d2j2 ⊕ Bj1 , d2j2+1 ⊕ Bj1

)
, j2 = 0, 1, . . . , [s/2] − 1.

In total, there are [s/2]2 such Bj1j2 , each of which, by applying Lemma 3 twice, has the property that
certain subarrays of 2u + 2 factors are full factorials, thus making B∗

j1j2
Ru2 an orthogonal Latin hypercube.

In general, define

Bj1···jv = (
d2jv ⊕ Bj1···jv−1 , d2jv+1 ⊕ Bj1···jv−1

)
, jv = 0, 1, . . . , [s/2] − 1.

Each of these [s/2]v Bj1···jv has a structure that allows itself to be rotated into an orthogonal Latin hypercube
via B∗

j1···jv Ruv. Combining the columns of these designs obtained from all the Bj1···jv , we obtain an orthogonal
Latin hypercube with m = [s/2]v 2u+v columns. Now suppose A = (A1, . . . , Ak) is an orthogonal array such
that each Aj is a full factorial of 2u factors of s levels. If we use each Aj as the B(0) in the above construction
and then combine all the columns of orthogonal Latin hypercubes obtained from all the Aj, we obtain
an orthogonal Latin hypercube with m = k[s/2]v 2u+v columns. We summarize these developments as a
theorem.

THEOREM 1. Let A = (A1, . . . , Ak) be an s-level orthogonal array of strength 2 such that each Aj is
a full factorial of 2u factors. Then using the rotation matrix Ruv, an OLH(n, m) can be constructed with
n = s2u+v runs and m = k[s/2]v 2u+v factors.

Theorem 1 generalizes the results of Steinberg & Lin (2006) and Pang et al. (2009), which correspond
to the special case of v = 0 in Theorem 1, and thus allows designs with much more flexible run sizes to be
generated. By taking v = 1, 2, . . . , 2u, we see that Theorem 1 fills all the gaps in the run sizes left by the
original rotation method. Though Theorem 1 is applicable to any v � 0, the existence of A = (A1, . . . , Ak)

in Theorem 1 requires that k2u(s − 1) � s2u − 1. Construction of such arrays A was discussed earlier in
Steinberg & Lin (2006) and Pang et al. (2009), and recently by Sun & Tang (2017).

Example 3. The OLH(32, 24) obtained in Example 1 corresponds to u = 2, s = 2 and v = 1 applied
to the array A there. If we continue to apply our method, we obtain an OLH(64, 48) from taking v = 2 and
an OLH(128, 96) from v = 3.

If an OLH(s, m′) is available, then an orthogonal Latin hypercube with more columns can be constructed
using the idea of Lin et al. (2009). This is done as follows. As in Theorem 1, let A = (A1, . . . , Ak) be an
orthogonal array of strength 2 with each Aj being a full factorial of 2u factors. Then each of the m′ columns
of an OLH(s, m′) can be used to generate one copy of A. Rotating these m′ copies of A separately using
Ruv and then combining all the columns, we obtain the next result.
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Miscellanea 469

COROLLARY 1. If an OLH(s, m′) is available, then an OLH(n, m) can be constructed that has n = s2u+v

runs and m = m′k[s/2]v 2u+v factors.

Example 4. Let us start with an OA(25, 6, 5, 2), say A = (A1, A2, A3). Because s = 5, we have [s/2] = 2.
Thus we can obtain an OLH(125, 24) by Theorem 1. Since an OLH(5, 2) is available, Corollary 1 gives an
OLH(125, 48).

3·3. Further results

Let us take a closer look at the problem of constructing OLH(s3, m) by the method of rotation. This
requires the use of R11 as in (1) and the construction of an orthogonal array A of s3 runs whose columns
can be arranged in the form A = (A1, . . . , Ak), where each Ai = (Ai1, Ai2) with both Ai1 and Ai2 having
two columns, and with the property that (Ai1, a) for any column a of Ai2 and (a, Ai2) for any column a of
Ai1 are of strength 3. But this property of Ai = (Ai1, Ai2) is actually equivalent to that of Ai itself being of
strength 3. In § 3·2, we construct such an array A from an orthogonal array of s2 using a difference scheme.
In this section, we provide a direct solution to the problem.

We want to construct an orthogonal array OA(s3, m, s, 2) that has the form A = (A1, . . . , Ak) such that
each Aj is an array of strength 3 for four factors. We will do this by carefully choosing sets of four columns
from the saturated OA(s3, s2+s+1, s, 2) obtained by the Rao–Hamming construction.

Let a, b, c be the three independent columns, i.e., (a, b, c) forms a full factorial in three factors of s
levels. Then all the columns in the OA(s3, s2+s+1, s, 2) can be represented by β1a + β2b + β3c with the
first nonzero β set to 1, where βi ∈ GF(s).

Define Ci0 = (a+αic, b+αic) for i = 0, 1, . . . , s − 1. For j = 1, 2, . . . , [(s − 1)/2], define Cij =
(a+α2j−1b+αic, a+α2jb+αic) where i = 0, 1, . . . , s − 1.

LEMMA 4. We have:
(i) (Cij, Ci′j) has strength 3 for any j and i |= i′;
(ii) (C(s−1)0, C01) has strength 3 so long as α1 |= −1 and α2 |= −1;
(iii) (C(s−1)j, C0(j+1)) has strength 3 for any j � 1.

The condition for part (ii) of Lemma 4 cannot hold if s � 3. But when s > 3, we can always relabel the
elements of GF(s) to make α1 |= −1 and α2 |= −1. We will give a separate treatment for s = 3 later in the
section. The following general result works for any s > 3.

Create the following list of ordered Cij:

C00, . . . , C(s−1)0, C01, . . . , C(s−1)1, C02, . . . , C(s−1)2, . . . .

By Lemma 4, any two adjacent Cij taken together from the above list is an array of strength 3. If we take
two Cij at a time from the above list to form A1, A2 and so on, we then obtain

A = (A1, . . . , Ak) where each Aj is an OA(s3, 4, s, 3), (2)

with

k =
{

1

2

(
s + s

[
s − 1

2

] )}
· (3)

Now in each Aj, we replace level αj by j − (s−1)/2 to obtain A∗
j . Then (A∗

1R11, . . . , A∗
kR11) is an orthogonal

Latin hypercube for m = 4k factors.

THEOREM 2. For any prime power s � 3, an OLH(s3, m) can be constructed where

m =
⎧⎨
⎩

s2, s even,
s2 + s − 2, s = 4q + 1 for some integer q,
s2 + s, s = 4q + 3 for some integer q.
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470 F. SUN AND B. TANG

Table 1. Some orthogonal Latin hypercubes, OLH(n, m)

s n m Rotation matrix Source

2 32 24 R21 Theorem 1 and Example 3
2 64 48 R22 Theorem 1 and Example 3
2 128 96 R23 Theorem 1 and Example 3
2 512 496 R31 Theorem 1
3 27 12 R11 Theorem 2 and Example 5
3 243 80 R21 Theorem 1
5 125 58 R11 Corollary 2 and Example 6
7 343 168 R11 Corollary 2 and Example 6
9 729 445 R11 Corollary 2 and Example 6

For s > 3, Theorem 2 is established by the preceding general construction, as one can easily verify that
the number m = 4k of factors with k as in (3) has the form stated in the theorem. For s = 3, we construct
(A1, A2, A3) directly with A1 = (a, b, c, abc), A2 = (ab, ab2, ac, ac2) and A3 = (bc, bc2, abc2, ab2c2) where
aβ1bβ2cβ3 is a shortcut notation for β1a + β2b + β3c.

An application of Theorem 1 to the case of u = 1 and v = 1 produces an OLH(s3, m) with the number
m of factors given by m = 4[(s + 1)/2][s/2], which equals s2 for even s and s2 − 1 for odd s. We see that
Theorem 2 is capable of constructing an OLH(s3, m) with a larger m whenever s is odd.

In obtaining A = (A1, . . . , Ak) as in (2) by choosing columns from the saturated OA(s3, s2 + s + 1, s, 2),
not all columns are selected. For even s, the s + 1 leftover columns are actually on the same line, in the
language of projective geometry, and no three of them can have strength 3. For s = 4q + 3, there is only
one leftover column. For s = 4q + 1, the three leftover columns are actually independent. Together, they
can be used to create one more orthogonal column of s3 levels.

PROPOSITION 1. An OLH(s3, s2 + s − 1) can be constructed where s = 4q + 1 for some q is a prime
power.

Example 5. For s = 3 and s = 7, Theorem 2 gives an OLH(27, 12) and an OLH(343, 56). For s = 5
and s = 9, Proposition 1 gives an OLH(125, 29) and an OLH(729, 89). In contrast, Theorem 1 gives an
OLH(27, 8), an OLH(125, 24), an OLH(343, 48) and an OLH(729, 80) for s = 3, 5, 7 and 9, respectively.

Similar to Corollary 1, combining the idea of Lin et al. (2009) with Theorem 2 and Propostion 1, we
obtain the next result provided that an OLH(s, m′) is available.

COROLLARY 2. If an OLH(s, m′) exists, then an OLH(s3, m) can be constructed where

m =
⎧⎨
⎩

m′s2, s even,
m′(s2 + s − 1), s = 4q + 1 for some integer q,
m′(s2 + s), s = 4q + 3 for some integer q.

Example 6. For s = 5, 7 and 9, using the existing OLH(5, 2), OLH(7, 3) and OLH(9, 5) see (Lin et al.
2009), Corollary 2 then gives an OLH(125, 58), an OLH(343, 168), and an OLH(729, 445).

Finally, we present in Table 1 a collection of orthogonal Latin hypercubes that can be constructed using
our methods. Some of these have been discussed in the early examples. All designs in Table 1 are new.

4. DISCUSSION

Through the introduction of a rich class of rotation matrices, we have developed a method of constructing
orthogonal Latin hypercubes that fills all the gaps in run sizes left by the original rotation method. The
construction requires the creation of an orthogonal array whose sets of columns corresponding to the
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Miscellanea 471

nonzero entries of a rotation matrix are full factorials. While the method of constructing such arrays in
§ 3·2 using difference schemes is more generally applicable, our direct method for OA(s3, m, s, 2) in § 3·3
proves to be more powerful. It would be interesting to investigate whether a direct construction will still
work for the case of OA(s5, m, s, 2). Steinberg & Lin (2006) and Sun & Tang (2017) showed that the rotation
method enjoys some attractive space-filling properties. The orthogonal Latin hypercubes given by Theorem
1, Theorem 2 and Proposition 1 are all OA-based Latin hypercubes that achieve stratifications on s × s
grids in two dimensions, but another future research direction would be to determine whether these designs
also possess some stronger space-filling properties (Sun & Tang, 2017). It would be also interesting to
examine how to use our general rotation method to construct Latin hypercubes with higher-order orthogonal
properties. A result from Sun et al. (2011, Theorem 1) should be useful in this regard.
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APPENDIX

Proof of Lemma 1

By a simple induction argument, we can show that RT
uvQu+v = Qu+vRuv, from which it follows that Ruv

is a matrix with both its rows and its columns mutually orthogonal. This proves Lemma 1(i). Lemma 1(ii)
is obvious.

Proof of Lemma 2

Let e1h, . . . , egh and fh be the hth elements of e1, . . . , eg and f , respectively. Then for any β1, . . . , βg and
βg+1 in GF(s) and any h, we must have that

e1h =β1, . . . , egh =βg , fh+ejh =βg+1 if and only if e1h =β1, . . . , egh =βg , fh =βg+1−βj.

Since
(
e1, . . . , eg , f

)
is a full factorial, Lemma 2 is immediate.

Proof of Lemma 3

Simply let Bi = (e1, . . . , eg) and f = (dj − di) ⊕ 0sg . Then Bj can be written as (e1 + f , . . . , eg + f ).
Then Lemma 3 follows from Lemma 2.

Proof of Lemma 4

We only give proofs for parts (i) and (ii). The proof for part (iii) is similar to that for part (i).
We now prove Lemma 4(i). For j = 0, (Cij, Ci′j) becomes (Ci0, Ci′0) = (a + αic, b + αic, a + αi′c, b +

αi′c), which will have strength 3 if we show that none of its columns can be written as a linear combination
of two other columns. For example, assume that a + αi′c = β1(a + αic) + β2(b + αic) for some β1 and
β2 from GF(s). Since a, b, c are independent, we must have β1 = 1, β2 = 0 and αi′ = β1αi + β2αi, which
leads to αi′ = αi, contradicting i |= i′. The proof for j � 1 is very similar.

To prove Lemma 4(ii), consider the four columns a + αs−1c, b + αs−1c, a + α1b, a + α2b given by
(C(s−1)0, C01). Clearly, a + αs−1c or b + αs−1c cannot be linear combinations of a + α1b and a + α2b. Now
suppose that a + α1b = β1(a + αs−1c) + β2(b + αs−1c) for some β1, β2 ∈ GF(s). Then we must have
β1 = 1, β2 = α1 and β1 + β2 = 0, which implies that β1 + β2 = 1 + α1 = 0. This is impossible since

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/104/2/465/3746573 by N
ortheast N

orm
al U

niversity Library user on 20 N
ovem

ber 2023



472 F. SUN AND B. TANG

α1 |= −1. Similarly, we can show that a + α2b cannot be a linear combination of a + αs−1c and b + αs−1c
if α2 |= −1.
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